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We evaluate the self-force acting on an extended nonrelativistic charged particle, in the framework of
classical electrodynamics with a cutoff at short distances. We show that in the regularized Maxwell theory, the
point particle limit is finite and well defined. As a result, the electromagnetic mass of a point particle enters the
equation of motion in a form consistent with the special theory of relativity.@S1063-651X~96!15111-4#

PACS number~s!: 03.50.De

I. INTRODUCTION

The nonrelativistic equation of motion of an extended
charge was first derived by Abraham~1903! and Lorentz
~1904!, who considered a purely electromagnetic model of
the electron’s structure@1#. It was assumed that in the instan-
taneous rest frame of the particle, the charge distribution is
rigid and spherically symmetric. If an external force is also
applied to the electron, then the Abraham-Lorentz equation
of motion which assumes no mechanical mass takes the form
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wherev is the velocity of the particle andU(a) is the elec-
trostatic energy of a symmetric charge distributionr~x!,
which is located within a sphere of radiusa:

U~a!5
1

2 E d3xE d3x8
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ux2x8u
. ~2!

The factor~4/3!U/c2 in Eq. ~1! is evidently the electro-
magnetic mass. IfU were the total energy, special relativity
would requireU5mc2, wherem is the observed mass of the
electron. For this reason, the factor 4/3 has been a source of
considerable discussion. Poincare´ @1# gave a solution to this
problem, pointing out that the stability of the charge requires
the existence of nonelectromagnetic, attractive forces acting
on the particle. These internal forces yield a contributionm0
to the mass of the particle, which would appear as an added
coefficient of the acceleration in Eq.~1!. Then the require-
ments of special relativity would apply only to the total self-
energy and massm5mel1m0. Nevertheless, such a solution
has one puzzling aspect. Classical electrodynamics is a prop-
erly covariant theory, so we might expect that a correct cal-
culation should not violate the requirements of Lorentz co-
variance. In fact, one can define a purely electromagnetic
self-energy-momentum tensor having the correct Lorentz
transformation properties~Rohrlich @2#; Jackson@3#!. Com-
prehensive reviews of these and other relevant aspects of the
above problem may be found in the literature~Erber @4#;
Teitelboim, Villaroel, and Van Weert@5#; Pearle@6#!.

The point electron has been of greatest interest because
high-energy experiments indicate that the electron may be
regarded as a point particle, at least down to distances of
order of 10215 cm. Using an approach where the electron is

treated from the start as a point charge, Coleman@7# intro-
duced a cutoff in the Maxwell theory, which enables an un-
ambiguous derivation of the relativistic equation of motion
comparable to Eq.~1!, called the Lorentz-Dirac equation@8#.
He considered the cutoff as a merely computational device.
On the other hand, Moniz and Sharp@9# have shown in the
context of the quantum theory of a nonrelativistic electron
that a natural cutoff of order of the Compton wavelength of
the electron may be effectively induced by the processes
which occur in quantum electrodynamics.

In this work, we consider the point electron as a limiting
case of an extended charged particle, which may lead to a
useful insight. In particular, we would like to propose an
alternative explanation for the factor 4/3 which appears in
Eq. ~1!. To this end, we remark that the Abraham-Lorentz
assumption of the existence of a rigid extended particle leads
to a difficulty with regard to special relativity. In classical
electrodynamics, the point particle limit cannot be taken be-
cause the electromagnetic mass becomes infinite. In order to
circumvent this problem, we shall use a gauge and Lorentz
invariant regularization of the Maxwell theory at short dis-
tances. This is done by introducing an appropriate cutoff at
the threshold of the classical regime, which allows for the
existence of a finite and well defined point particle limit. In
this case, the calculation of the electromagnetic mass does
not violate the requirements of Lorentz covariance, so that
U/c2 will enter the particle’s equation of motion with the
proper factor of unity, instead of 4/3.

A possible approach involves adding a new term to the
Maxwell Lagrangian. Its form can be restricted by a few
reasonable and simple properties, which leave the Maxwell
theory as nearly unaltered as possible:~a! The Lagrangian
must be gauge and Lorentz invariant.~b! It should lead to
local field equations which are still linear in the field quan-
tities. Then, the simplest possibility which includes a cutoffl
leads to a Lagrangian containing second-order derivatives of
the electromagnetic potentialsAa5~A,if!:
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whereFab5]aAb2]bAa is the usual electromagnetic field
tensor andj a5~j ,icr! is the four-current. At distances much
larger than the cutoff, the fields described by Eq.~3! become
essentially equivalent to the Maxwell fields. We mention that
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such a Lagrangian was proposed a long time ago by Podol-
sky and Schwed@10#, in a somewhat different context.

In the Lorentz gauge]aAa50, one obtains from Eq.~3!
the following set of linear partial differential equations:

~12 l 2h !hAa52
4p

c
j a . ~4!

In the static case, the scalar potential due to a charge
distributionr turns out to be

f~x!5E d3x8
r~x8!

ux2x8u F12expS 2
ux2x8u

l D G , ~5!

which, at distances much larger thanl , becomes practically
equal to the Coulomb potential. On the other hand, at short
distancesl behaves as an effective cutoff since for a point
charge located at the origin,f approaches the finite valuee/ l
as uxu→0.

In Sec. II, we present in this framework a direct calcula-
tion of the self-force acting on an extended spherically sym-
metric charged particle. We show in Sec. III that in the point
particle limit, the electromagnetic mass is well defined and
has a form consistent with the requirements of Lorentz co-
variance.

II. CALCULATION OF THE SELF-FORCE
FROM THE RETARDED POTENTIALS

Let us evaluate, in the regularized Maxwell theory, the
self-force on the rigid spherically symmetric charged particle
shown in Fig. 1.

We calculate initially the force that a small volume ele-
mentd3x experiences from all other parts of the sphere. In
terms of the electric and magnetic fields at this location, the
force on the elementd3x is given by

dFs~x,t !5d3xr~x!FE~x,t !1
1

c
v~ t !3B~x,t !G . ~6!

Without loss of generality, we may consider the instanta-
neous rest frame of the particle. Then we need to evaluate
only the electric field which can be derived from the retarded
potentials asE52“f2]A/cdt. Integrating over all parts of
the sphere, we find that the self-force acting on the extended
charged particle is given in this frame by the expression

Fs~ t !52E r~x,t !F“f~x,t !1
1

c
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]t
~x,t !Gd3x. ~7!

In order to determine the form of the retarded potentials,
which satisfy the differential equations~4!, it is useful to find
the Green function for the equation

~12 l 2h !hG~x2x8,t2t8,l !524pd~x2x8!d~ t2t8!. ~8!

Then the solution of Eq.~4! will be

Aa~x,t,l !5
1

c E G~x2x8,t2t8,l ! j a~x8,t8!d3x8dt8. ~9!

The appropriate Green function must satisfy the causality
condition thatG50 for t,t8. With the help of the invariant
functions described, for example, in@11#, we find that the
proper solution of the differential equation~8! is given by

G~R,t,l !5
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whereR5ux2x8u, t5t2t8, andJ0 is the Bessel function of
order zero. Note that in the limitl→0, the second term van-
ishes, so that Eq.~10! reduces to the usual retarded Green
function of classical electrodynamics. Combining the two
terms in Eq.~10!, and using the fact thatG is an invariant
function of c2t22R2, we arrive at the expression

G~R,t,l !52

uS t2
R

c D
ct

]

]t FJ0SAc2t22R2

l D G . ~11!

We recall at this point that the distinctive feature of the
Abraham-Lorentz calculation in electrodynamics is a series
expansion in powers ofR/c, for R/c small, of the four-
current j a , which must be evaluated at the retarded time
t85t2R/c. This is essentially equivalent to an expansion of
the usual Green function as

1
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followed by thet8 integration in Eq.~9!.
Proceeding in a similar way, we may expand the retarded

Green functionG(R,t,l ) as

G~R,t,l !5 (
n50

`
~21!n

n!cn
Rn21f nS lRD dn

dtn
d~t!, ~13!

where f n( l /R) are dimensionless functions which should re-
duce to unity in the limitl→0. These can be determined by
multiplying G by tn and performing thet integration using
the properties of the Bessel functions@12#. We record here
the expressions for the lowest order functionsf n :

FIG. 1. The interaction between the elements of a spherically
symmetric charged particle.
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f 0S lRD512e2R/ l , f 151

f 2S lRD511
l

R
e2R/ l , f 351 ~14!

which will be used subsequently.
Substituting series~13! in Eq. ~9!, the self-force~7! be-

comes

Fs~ t !52 (
n50

`
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n!cn E d3xr~x,t !E d3x8

3E dt8H Fr~x8,t8!“~Rn21f n!
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d

dt G dn

dtn
d~t!J . ~15!

We consider the first two terms arising from the scalar po-
tential separately. Using Eq.~14!, we see that then51 term
vanishes identically. Then50 term leads to the electrostatic
self-force

Fs
el52E d3xr~x,t !E d3x8r~x8,t !“F 1R ~12e2R/ l !G ,

~16!

which vanishes by symmetry. Eliminating these two terms
and increasing by two the summation index on the terms
contributing by the scalar potential, we find after performing
the t8 integration that the sum~15! can be written as follows:

Fs~ t !52 (
n50

`
~21!n

n!cn12 E d3xr~x,t !

3E d3x8
]n11

]tn11 H ]r~x8,t !

]t

“~Rn11f n12!

~n11!~n12!

1Rn21f nj ~x8,t !J . ~17!

The continuity equation may now be used to replace]r/]t by
2“8•j ~x8,t!. In the d3x8 integration we can integrate these
r-dependent terms by parts, so that the bracket in Eq.~17! is
equivalent to

$ %5Rn21f nj ~x8,t !2
@ j ~x8,t !•“#“~Rn11f n12!

~n11!~n12!
.

~18!

The first two terms in Eq.~17! may now be evaluated explic-
itly with the help of Eq.~14!, to give

Fs
052
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]
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and

Fs
15

2

3c3 E d3xr~x,t !E d3x8
]2

]t2
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For a rigid charge distribution the current density is
j ~x8,t!5r~x8,t!v(t); therefore,j•R5rv•R. Furthermore, for a
spherically symmetric charge distribution only the compo-
nent ofR parallel tov can survive the integration. In this
case~v•R!2 can be replaced by its mean valuev2R2/3. Since
at low velocities we can neglect terms nonlinear inv, the
expressions forF s

0 andF s
1 become, respectively,
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2

3
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2e2

3c3
v̈, ~22!

wheree is the total charge of the particle. TheF s
1 term is

independent of the size of the particle and reproduces the
radiation reaction force found in classical electrodynamics.

III. LORENTZ COVARIANCE PROPERTIES
OF THE MODEL

Let us consider now the structure of theF s
0 term. It de-

pends on the radiusa of the charged particle as well as on
the cutoff l . If we first take the limitl→0, we see that the
double integral becomes proportional to the electrostatic self-
energy~2! of the charge distribution. Then,2F s

0 will yield
the Abraham-Lorentz term which appears in Eq.~1!.

In order to obtain the general expression for the electro-
static self-energy whenlÞ0, we recall that the corresponding
energy can be written in a positive definite form as@10#

U~a,l !5
1

8p E d3x@E•E1 l 2~“•E!2#, ~23!

whereE52“f. Making use of the relations~4! and~5!, Eq.
~23! can easily be shown to be equivalent to the expression

U~a,l !5
1

2 E d3xE d3x8r~x!r~x8!
1

R
@12e2R/ l #, ~24!

which reduces to Eq.~2! in the limit l→0. On the other hand,
if the point particle limita→0 is taken first,U approaches
the finite valuee2/2l . In this case, the second part of the
double integral in Eq.~21! removes the factor 4/3, so that we
obtain

2Fs
0~0,l !5

4

3
~12 1

4 !U~0,l !
v̇

c2
5
U~0,l !

c2
v̇. ~25!

This has the correct form required by special relativity,
since the electrostatic self-energy divided byc2 can be iden-
tified with the regularized electromagnetic mass of a point
charge,mel5e2/2lc2.

To see more clearly the origin of this behavior, we write
Eq. ~21! in the form
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2Fs
0~a,l !5CS al D U~a,l !

c2
v̇, ~26!

where the coefficientC is a dimensionless function ofa/ l . It
may be evaluated explicitly given a specific model for the
charge distribution. For example, if the charged particle is
regarded as a spherical shell of charge of radiusa, then we
find from Eq.~21! that

CS al D5
5

3
1

1/3

@exp~22a/ l !21#211 l /2a
. ~27!

This monotonic function is illustrated in Fig. 2.
We see that the coefficientC(a/ l ) interpolates smoothly

between the point particle limit in the regularized theory,
when C~0!51, and the result obtained for an extended
charged particle in the Maxwell theory, whenC~`!54/3. It is
important to note that unless the radius of the particle van-
ishes,U/c2 does not appear in Eq.~26! with the correct
coefficient required by Lorentz covariance. This occurs in
consequence of the assumed existence of a rigid extended
particle, which is incompatible with the special theory of
relativity.

Higher-order terms in the expansion~17! give for a point
charged particle contributions of the form

Fs
n5

bne
2

n!cn12 l
n21

dn11

dtn11 v, ~28!

wherebn are constants. These terms become relevant only
when significant changes in motion occur in very short times
of order l /c. In particular, the higher-order terms are essen-
tial in suppressing, when the electron bare mass is positive,
the unphysical runaway solutions characterized by an expo-
nential growth of the acceleration with time@9,13#.

In the situations when such terms can be neglected, the
nonrelativistic equation of motion of a point charged particle
can be approximated as

FU~0,l !

c2
1m0G v̇2

2e2

3c3
v̈.Fext, ~29!

where the electromagnetic massmel occurs in accord with
the special theory of relativity. Since in practice the electro-
magnetic field cannot be separated from the bare particle, we
combinemel with the bare massm0 to get the empirical rest
massm. The equation of motion then takes the form

mv̇.
2e2

3c3
v̈1Fext, ~30!

which describes correctly the radiation damping observed in
the classical domain.
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FIG. 2. Behavior of the coefficientC(a/ l ) as a function of the
radius of the charged particle.
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